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Abstract. We unveil collective effects induced by imitation and social pressure by analyzing data from
three different sources: birth rates, sales of cell phones and the drop of applause in concert halls. We
interpret our results within the framework of the Random Field Ising Model, which is a threshold model
for collective decisions accounting both for agent heterogeneity and social imitation. Changes of opinion can
occur either abruptly or continuously, depending on the importance of herding effects. The main prediction
of the model is a scaling relation between the height h of the speed of variation peak and its width w of
the form h ∼ w−κ, with κ = 2/3 for well connected populations. Our three sets of data are compatible
with such a prediction, with κ ≈ 0.62 for birth rates, κ ≈ 0.71 for cell phones and κ ≈ 0.64 for clapping.
In this last case, we in fact observe that some clapping samples end discontinuously (w = 0), as predicted
by the model for strong enough imitation.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 87.23.-n Ecology and evolution –
89.65.-s Social and economic systems

1 Introduction

Traditional economics treat the aggregate behaviour of
a whole population through a “representative agent” ap-
proach, where the heterogeneous preferences of individual
agents are replaced by an average preference curve, which
determines, for example, the dependence of the demand
on the price of a certain product. This approach consid-
ers that agents determine their action in isolation, with no
reference whatsoever to the decision of their fellow agents;
interactions between agents are totally neglected. The rep-
resentative agent idea has been fiercely criticized by some
authors (see e.g. [1]). Models where the interaction be-
tween agents is explicitly taken into account, traditional
in physics, only begin to be systematically explored in
economics and sociology. The need to account for interac-
tions stems from the fact that imitation and social pres-
sure effects are obviously responsible for the appearance of
trends, fashions and bubbles that would be difficult to un-
derstand if agents were really insensitive to the behaviour
of the crowd. From a theoretical point of view, as will be
clear below, interactions lead to an aggregate behaviour
that may be completely different from that implied by a
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representative agent approach. Catastrophic events (such
as crashes, or sudden opinion shifts) can occur at the
macro level, induced by imitation, whereas the behaviour
of independent agents would be perfectly smooth [2].

Imitation is deeply rooted in living species as a strat-
egy for survival: young children learn (for example lan-
guages) by imitation. Herds and flocks flee away from dan-
ger or keep the correct destination direction by following
the motion of their neighbours. Humans are influenced by
their congeners both at a primitive level (fear of being
excluded from the group) and at a rational level (others
may possess some useful information, revealed by their
very actions). Collective effects induced by imitation can
be beneficial for a society as a whole, but can also be detri-
mental and lead to major catastrophes when imitation
cascades are based on unreliable information or dangerous
ideas, and when social pressure supersedes rational think-
ing. Understanding these collective effects is therefore of
primary importance; they may undermine the stability of
democracies (and have done so in the past), lead to crowd
panic, financial crashes, economic crisis, etc. At a smaller
scale, these effects determine how new products or new
technologies penetrate a market [3,4]; strong social imi-
tation can be the key to the success of a brand, a book
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or a movie. In any case, social imitation often leads to
distortion and exaggeration, i.e. a decoupling between the
cause and the effect, which in turn generates inequalities
and condensation phenomena.

Despite their importance, stressed long ago by Keynes,
quantitative models of imitation effects have only been
explored in a recent past. Bass introduced in 1969 [3] a
simple model of imitation that leads to a logistic, sig-
moidal shape describing the adoption of a new product,
or a new technology. Another branch of models, concerned
with information cascades, was initiated by the paper of
Bikhshandani, Hirshleifer and Welsh in 1993 [5] (see [6] for
a recent review and more elaborate developments). Yet a
different direction of research, where the interaction be-
tween agents is taken into account explicitly in binary
choice situations, was pioneered by Föllmer in 1974 [7],
followed by Orléan [8] and others, and, in a sociologi-
cal context, by Granovetter in 1978 [2], and pursued fur-
ther in [9,10]. The idea, clearly expressed in Brock and
Durlauf [11], is that the utility or payoff an individual re-
ceives depends directly on the choices of others in that
individual’s reference group, as opposed to the sort of de-
pendence which occurs (only) through the intermediation
of markets (see [12]). This category of models have in fact
a long history in physics, where interaction is at the root
of spectacular collective effects in condensed matter, such
as ferromagnetism, superconductivity, etc. It is therefore
not surprising that the understanding of fashion, booms
and crashes, opinion shifts and the behaviour of crowds or
flocks, has attracted considerable interest in the physics
community in the recent years (see S. Galam [13] for early
insights, and [14–24] for a short, subjective selection). One
particular model, that appears to be particularly inter-
esting and generic, is the so-called ‘Random Field Ising
Model’ (rfim), which has been successfully proposed to
model hysteresis loops in random magnets [25] and a vari-
ety of other physical situations. The hysteresis loop prob-
lem is an example of a collective dynamics of flips (the
individual magnetic spins) under the influence of a slowly
evolving external solicitation, but the model can easily be
transposed to represent a binary decision situation under
social pressure [13], influenced by some global information
(such as the price of a product) or by zeitgeist. This trans-
position was recently discussed in several socio-economics
context in [26–28], see also [29]. The model has a rich
phenomenology, which we will recall below; in particular,
and contrarily to Bass’ simple model, discontinuities ap-
pear in aggregate quantities when imitation effects exceed
a certain threshold, even if the external solicitation varies
smoothly with time. Below this threshold, the behaviour
of “demand”, or of the average opinion, is smooth, but the
natural trend can be substantially amplified and acceler-
ated by peer pressure. The aim of this paper is to explore
some situations where the model should apply, and test
qualitative and quantitative predictions against empirical
data. We have gathered data concerning (a) the drop of
birth rates in European countries in the second half of
the XXth century, (b) the increase of cell phones in Eu-
rope in the 90’s, (c) the way clapping dwindles out at the

end of music concerts (see [30]) and (d) crime statistics
in different US states in the period 1960–2000, but this
last data set did not show exploitable idiosyncratic vari-
ations. In the first three cases, we find that our data fits
well the picture suggested by the model, and that notice-
able collective effects can indeed be detected. By analyzing
quantitatively the shape of the signals, we find that social
pressure effects are distinctly stronger in some countries,
or for some audiences, leading to more abrupt variations.
We find a power-law relation between the maximum slope
of the signal and the temporal window over which the evo-
lution takes place, in surprisingly good agreement with the
‘mean-field’ version of the model. The case of applause is
interesting because it is very close to being a controlled
experiment. In that case, we observe both continuous and
abrupt endings, as predicted by the model.

2 A model for opinion shifts: the RFIM

We will assume that each agent i is confronted to a binary
choice, the outcome of which being noted Si = ±1. This
binary choice can be to vote yes or no in a referendum,
it can be to buy or not to buy a certain good, to have or
not to have children, to clap or to stop clapping, etc. (the
three last examples are indeed studied in the following
sections). We assume that the decision of agent i depends
on three distinct factors [13,26–28]:

(i) his personal opinion, propensity or utility, measured
by a real variable φi ∈] − ∞, +∞[ which we take
to be time independent. Large positive φ’s means a
strong a priori tendency to decide S = +1, and large
negative φ’s a strong bias towards S = −1;

(ii) public information, affecting all agents equally, such
as objective informations on the scope of the vote, the
price of the product agents want to buy, the possi-
bility of birth control, the advance of technology, etc.
The influence of this time dependent common factor,
or polarization field, will be called F (t), again a real
variable in ]−∞, +∞[;

(iii) social pressure or imitation effects; each agent i is in-
fluenced by the decision made by a certain number
of other agents j in his “neighbourhood”, Vi. The in-
fluence of j on i is taken to be JijSj , that adds to
φi and F . If Jij > 0, the decision of agent j to buy
(say) reinforces the attractiveness of the product for
agent i, who is now more likely to buy. This reinforc-
ing effect can obviously lead to an unstable feedback
loop, as discussed below. If on the contrary Jij < 0,
the action of agent j deters agent i from making the
same choice, for example because it induces a price
increase. This “anti-conformist” tendency, although
rarer in human nature, can sometimes exist and be
relevant, but this will not be pursued further here
(but see [9] for a discussion of this point).

In summary, the overall incentive of agent i is φi +F (t)+∑
j∈Vi

JijSj , and the rule we choose for the decision of
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agent i at time t is simply:

Si(t) = sign



φi + F (t) +
∑

j∈Vi

JijSj(t − 1)



, (1)

meaning that the decision to “buy” is reached when the
incentive reaches a certain threshold value [2,9], chosen
here to be zero (any other i dependent value could have
been chosen, since this simply amounts to shifting the id-
iosyncratic field φi). If all Jij > 0, the above model is
known in physics as the Random Field Ising model at
zero temperature, and has been intensely studied in the
last decades (see [25] for a review). In physics, natural
networks of connections are d-dimensional regular lattices,
but other topologies, such as the fully connected case or
random (Erdos-Renyi) graphs have been studied as well.
The qualitative phenomenology does not depend much on
the chosen topology, nor on the distribution of idiosyn-
cratic fields, although quantitative details might be sensi-
tive to these.

Let us study first the case where social pressure is ab-
sent, i.e. Jij ≡ 0, ∀(i, j). Call R(φ) the cumulative dis-
tribution of φi, i.e. the probability that φi ≤ φ. The
aggregate demand, or average opinion O, is defined as:
O = N−1

∑
i Si, where N is the total number of agents

that we will assume to be very large. For a given polar-
ization field F , one easily finds:

O0 = −R(−F ) + (1 − R(−F )) = 1 − 2R(−F ). (2)

(The subscript 0 means that J = 0 here). As F increases
slowly from −∞ to +∞, the average opinion evolves from
−1 to +1 in a way that mirrors exactly the distribution of
a priori opinions in the population. For a generic distribu-
tion of φi’s (for example, Gaussian), the opinion evolves
smoothly as the polarization field is increased, as shown
in Figure 1. If one interprets F as (minus) the price P of
a product, the total demand curve D as a function of the
price is:

D = NR(P ), (3)

that only reflects individual preferences.
The situation can change drastically when imitation

is introduced. The simplest case is when the coupling be-
tween agents is “mean-field”, i.e. Jij ≡ 1/N, ∀(i, j) (see
[25,28] and, in a slightly different setting, [2,9]). This does
not mean that each agent consults all the other ones before
making his mind, but rather than the average opinion, or
total demand, becomes public information, and influences
the behaviour of each individual agent. This is in fact a
very realistic assumption: for example, the total sales of
a book, or number of viewers of a movie, is certainly an
important piece of information for consumers. It is also
known that the evolution of the public opinion on a cer-
tain topic is affected by polls, i.e. by a proxy of the average
opinion. Finally, in the case of financial markets, the price
change itself can be seen, on a coarse-grained time scale,
as an indicator of the aggregate demand (although the de-
tailed relationship between the two might be quite subtle,
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Fig. 1. Average opinion O as a function of the external solici-
tation field F (t). For an imitation parameter J < Jc, the curve
is smooth; whereas for J > Jc an hysteresis effect appears:
the average opinion remains small for an anomalously large
value of F (t) before suddenly jumping to the upper branch.
The amplitude of the jump increases as (J − Jc)

β for J − Jc

small [25].

see [31]). This global feedback effect simply shifts F to
F + JO, leading to a self-consistent equation:

O = 1 − 2R(−F − JO). (4)

If imitation is weak enough, one can expand the right hand
side in powers of J , leading to first order to:

O ≈ O0

1 − 2p(F )J
, (5)

where p(F ) = dR/dF is the probability density of id-
iosyncratic fields. This equation shows that around the
point where the slope of O0 vs. H is maximum, i.e. around
the maximum of p(F ), the speed of variation of opinion
changes is also maximally amplified – imitation leads to
exaggeration. As imitation becomes stronger, the maxi-
mum slope of O vs. F increases and finally diverges for
a critical value J = Jc given by Jc = Aσ, where σ is the
width of the distribution p(φ), and A a numerical constant
that depends on the topology of the graph and on the de-
tailed shape of p(φ). This result shows that, as expected,
a diverse population (large σ) is less prone to collective
frenzy than a more homogeneous one. Above Jc, the self-
consistent equation has, for a range of F , three solutions
for O, one of which being unstable (see Fig. 1). This means
that as F is increased from −∞, the average opinion will
first follow the lower branch until it jumps discontinu-
ously to the upper branch, for a certain threshold field
Fc(J) (and symmetrically on the way back, at −Fc(J), as
the field is decreased). This discontinuity is very interest-
ing from a general point of view: it means that even when
the external solicitation is slowly and smoothly varied (i.e.
without any information shocks), populations as a whole
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can exhibit sudden, apparently irrational, opinion swings
(on this point, see Granovetter [2] for an early discussion –
in particular his Fig. 2). In an economic context, it means
that the demand for a product can vary discontinuously
from low to high as the price is decreased [9,28]. Note
that these interesting discontinuities are absent if thresh-
old effects are discarded, such as in the early Bass model
[3].

The vicinity of the critical point J � Jc reveals inter-
esting critical properties, to a large extent independent of
the detailed form of p(F ) or R(F ). Noting ε = Jc − J the
distance from criticality, one finds that the opinion slope
S = dO/dF takes a scaling form:

S =
1
ε
G

(
F − Fc(J)

ε3/2

)

, (6)

where the function G(x) can be computed explicitly [25],
and is universal. Its shape is plotted in Figure 2; one finds
that G(0) is a finite constant and G(x → ∞) ∼ x−2/3.
Equation (6) means that the slope, as a function of F ,
peaks at a maximum of order ε−1 and remains large on a
small window of field of order w ∼ ε3/2. In other words, the
height h of the peak behaves as w−κ with κ = 2/3, instead
of κ = 1 for a regular evolution, without any threshold
effects such as in the Bass model [3]. These results are
expected to be rather robust:

– the results are not restricted to a small neighbourhood
of ε = 0: the so-called ‘critical’ regime is known to
be quite large in the rfim. Therefore, the implicit as-
sumption made below that our empirical data is gener-
ically within the critical regime is plausible;

– the distribution of idiosyncratic fields is (within a
broad class) irrelevant;

– the detailed topology of the graph is also, to some ex-
tent, irrelevant. Only if the graph is a regular lattice
of dimensions less than d = 6 will the shape of the
scaling function and the value of the exponent κ be
affected [25].

Beyond Jc, the curve O(H) becomes discontinuous; the
amplitude of the jump is found to increase as (J − Jc)β

for J − Jc small, with β = 1/2 in mean-field situations
such as the one described above [25].

If now one ‘zooms’ on fine details (on scale 1/N) of
the curve O(F ) in the vicinity of J = Jc, one finds that
the evolution of O is actually resolved in a succession of
‘avalanches’ of different sizes s, where s agents simultane-
ously change their opinion. Interestingly, the distribution
of avalanche sizes also takes a scaling form which has at-
tracted enormous interest in the context of random mag-
nets [25], and offers an enticing microscopic picture of how
large opinion swings actually develop in a population: as
a succession of events, most of which small, but some in-
volving an extremely large number of individuals. More
precisely, at the critical point J = Jc, the distribution of
avalanche sizes as F is swept through Fc decays for large
s as s−µ with µ = 9/4 [25].

In summary, the transposition of the rfim to opin-
ion shifts predicts that the average opinion evolves, as
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Fig. 2. Shape of the scaling function of the peak, G(x), defined
by equation (6).

a function of the global solicitation, very differently if
imitation effects are weak (in which case the evolution
is smooth) or if imitation exceeds a certain threshold,
in which case aggregate quantities are discontinuous and
catastrophic avalanches may be triggered. More quantita-
tively, the model predicts that in generic situations, the
evolution slope should peak more and more as the crit-
ical point is approached: its height h increases while its
width w decreases, the two being related by h ∼ w−2/3.
We will now show that these predictions seem indeed to
be relevant in the three situations that we have investi-
gated: evolution of birth rate, of cell (mobile) phones and
of clapping activity. The idea is that different countries,
or different crowds, are characterized by different values of
the heterogeneity parameter σ and/or of the imitation pa-
rameter J . Therefore, the distance from the critical point
ε will vary across the set of available countries or audi-
ences, leading to peaks of different height and width. (A
fourth set of data, concerning crime statistics in the US,
was inconclusive, since the height h and width w were not
found to vary significantly from state to state.)

3 Birth rate in Europe 1950–2000

The decision to have children has been profoundly affected
by an easier access to birth control, higher education, the
loss of influence of religions, etc, which play the role of a
slowly evolving global solicitation field F (t). There might
also be a significant social pressure effect: the image of
women in society, the social prestige of having a career
rather than a family life, may have a strong deterring in-
fluence of the choice of having, or not having children.
Therefore, we believe that the three sources of influence
appearing in equation (1) above should be important to
understand the detailed evolution of birth rate in the sec-
ond half of last century.
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Fig. 3. Normalized fecundity index as a function of time for
Germany and Portugal (3 year average). Other countries are
intermediate in terms of the sharpness of the crossover. Inset:
yearly change of the fecundity index and Gaussian fits, allowing
one to extract both the height h and width w of the peaks.

We have downloaded from Eurostat
(europa.eu.int/comm/eurostat/) the birth rate in
several representative European countries (Belgium,
France, Germany, Grece, Italy, The Netherlands, Poland,
Portugal, Spain, Sweden, Switzerland, UK). The reported
birth rate is the average fecundity index in a given year,
from 1950 to 2000, except for Germany where we only
keep data before re-unification. In all countries, except
Sweden, this index has steadily decreased over the years.
In Sweden, the birth rate has, after having decayed like in
other countries, increased back in the late eighties, prob-
ably due to governmental incentives. In most countries
except Grece and Portugal, the slope of the decay reached
a maximum around 1970. We have treated the data as
follows (an identical treatment will also be applied in the
following sections). We first re-scale the data such that
the total range of variation is constant, independent of
the country, such as to remove any idiosyncratic, cultural
effects on the average number of children per family.
We then define the slope S(t) by taking the discrete
derivative of the curve, defining the yearly change of
(rescaled) birth rate. This leads to a rather noisy curve,
but that has a distinctive peak as a function of time, see
Figure 3. We then fit S(t) using a Gaussian shape for
the peak, plus a constant background (found to be small
compared to the maximum height of the peak). Since the
data is noisy, the Gaussian shape is only a convenient
way to extract the height of the peak h, its width w
and the location of the peak t∗. Interestingly, we find a
rather large variability of h and w across countries, much
beyond the uncertainty of the fitting parameters h and
w. Some countries, like West Germany, display a high
and narrow peak while others, like Portugal, have a much
broader peak, with a more modest height (see Fig. 3).
Now, plotting lnh vs. ln w across different countries, we
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Fig. 4. Height of the peak h, vs. width of the peak w, in a log-
log scale, both for birth rates and for cell phones. The mean
field prediction h ∼ w−2/3 is shown for comparison. A typical
relative error of 20% on the fitted values of h or w translates
into vertical and horizontal error bars of 0.2, comparable with
the erratic spread of the points. The heights corresponding to
cell phone data has been divided by a factor 1.7 to match the
birth rate data (the absolute height of the peak is in fact not
universal). The width w is however not rescaled, and shows
that the explosion of cell phones is, as expected, faster that
the collapse of the birth rate.

find (see Fig. 4) that the data clusters reasonably well
around a straight line of slope −2/3, as predicted by the
fully connected rfim detailed in the previous paragraph,
and in any case significantly smaller than the trivial value
−1, that would come about if countries only differed
through the intrinsic time scale of the evolution (as in
the Bass model, for example [3]). Remember that the
usefulness of that prediction is that it does not require
to specify the distribution of idiosyncratic fields φ. The
best regression through the data in fact gives a slope of
−0.71±0.11. This suggests that the accelerated birth drop
in some countries is indeed induced by a social pressure
effect, rather than being a mere dependence of diversity
(measured by variance σ2 of p(φ)) on the country, since in
that case one would trivially observe h ∼ 1/w. Note also
that the significant change of height and width across
different countries makes rather unplausible that the
drop in the birth rate is solely due to a sudden external
cause, like the availability of birth control pills. Although
this availability certainly triggered the phenomenon, its
amplification, according to our analysis, appears to be
compatible with imitation effects, exactly as described by
the rfim with a slowly evolving external drive F (t).

4 Number of cell phones in Europe,
1994–2003

The evolution of the number of cell phones in the last
decade is an interesting case study. The soaring number
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of cell phones obviously followed better technology, lower
prices, etc., encapsulated in our global solicitation field
F (t), which we again assume to be smoothly evolving with
time (no technology shocks). But it is also clear that social
effects must have been important, not only as in usual
fashion phenomena where not possessing the trendy object
gives rise to a feeling of inferiority, but also because the
usefulness of cell phones is objectively increased if more
people can use one.

We have studied the monthly evolution of the to-
tal number of cell phones in use (all providers in-
cluded) in five different European countries (Germany,
UK, France, Italy, Spain) in the period 1994–2003. We
obtained the data from the art (“Autorité de Régulation
des Télécommunications” in Paris). During that period,
the number of cell phones increased by a factor ∼20 or
more. We apply to the data the same treatment as in the
previous section: normalization, discrete difference and a
Gaussian fit. The normalized data is plotted in Figure 5.
From the Gaussian fit of the peak, we again extract a
height h, width w and location t∗. In this case, we find
that all curves peak at t∗ = 2000.35 ± 0.25. As for birth
rates, we find a rather large spread in the values of h and
w, with again Germany standing out as the most “collec-
tive” country. What we find quite remarkable is that the
five points fall quite nicely on the same curve as for birth
rates, although the time scale is obviously shorter for the
spreading of cell phones than for the decay of birth rates
(see Fig. 4). Notice however that the birth rate collapse
in Germany is almost as fast as the rise of cell phones
in Italy! The slope of the best regression over the five
points is −0.62 ± 0.07, clearly compatible with a slope
−2/3 (see Fig. 4). This result rather strongly suggests
some social amplification of the trend, compatible with
the self-referential mechanism proposed here.

Note that although quite sharp, the above curves all
seem to lie in the smooth regime J < Jc of the rfim. On
the other hand, a true runaway behaviour, predicted for
J > Jc, cannot occur in the case of cell phones because
the rate at which these can be commercialized is finite;
this effect would regularize the discontinuity and give it
a finite width related to the maximum sale capacity of
phone providers. This regularisation effect will indeed be
observed in our last example, to which we now turn.

5 Persistent and interrupted clapping

After a concert, or a theater performance, the public usu-
ally claps for a period of time that reflects its satisfaction
or enthusiasm. A collective effect which is well documented
but that we will not be concerned with here is the possi-
ble synchronization of claps [32] (except insofar as these
synchronization effects already suggest the importance of
interactions between individuals). We rather want to fo-
cus on the way the clapping dies out. The point here is
that if people have a different degree of enthusiasm for the
performance, the time after which they will stop clapping
varies from one person to the next. More precisely, the
idiosyncratic field φi defined above is, in the present case,
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Fig. 5. Evolution of the total number of cell phones in use (all
providers included) in various European countries (3 month av-
erage). Inset: monthly change for Germany and Italy, allowing
one to extract both the height h and width w of the peaks.

the a priori amount of time ti a given individual would
carry on clapping if isolated from others. But of course,
we all hear what others are doing, and are clearly influ-
enced by the level of clapping of the public as a whole.
Many people would hate being the last individual to clap
in a large concert hall. Therefore, the propensity to clap
adapts to the overall clapping intensity, exactly as in the
rfim. In the present case, the external field F (t) is simply
(minus) the time elapsed since the start of applause: as
time passes, the necessity to clap declines. Therefore, in
the absence of interaction between individuals, the state
ni = 1, 0 of agent i is given by:

ni = Θ (ti − t), (7)

where Θ is the Heaviside function, Θ(x > 0) = 1,
Θ(x < 0) = 0. The overall sound level I is proportional to
the number of clapping people

∑
i ni (we neglect here the

individual fluctuations in clapping intensity); the model
we propose is simply that the a priori clapping time ti is
shifted by a quantity proportional to I: ti −→ ti + JI;
therefore the total clapping intensity at time t is given by:

I = 1 − R(t − JI), (8)

where we have just repeated, for the sake of clarity,
the general argument given in Section 2, adapted to the
present case. Therefore, we expect two distinct types of
applause: “persistent” clapping that slowly die out with
time, as more and more people progressively decide to stop
clapping (J < Jc), and “interrupted” clapping, which end
abruptly, because people pay acute attention to the global
clapping level and stop clapping as soon as they hear that
the noise level starts decreasing (J > Jc).

We have analyzed data coming from music concerts
recorded in the very same concert studio, “Studio 104” of
Maison de la Radio (Paris, France). The concerts took
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Fig. 6. Typical time series of sound intensity as a function
of time, during applause. One sees the initial rise, a relatively
constant plateau phase, and the final phase where clapping is
tapering off. Notice a few spurious spikes, corresponding to
occasional ‘bravos’ or other shouts. The data was filtered with
a Gaussian window of width 0.225 s.
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Fig. 7. Terminal stages of clapping corresponding to three
characteristic recordings: one of them is a slow decay of ap-
plause (over 10 s), corresponding to a very heterogeneous au-
dience. The two other ones are fast events (on the order of one
second), one of them can even be classified as instantaneous
since its width cannot be resolved (i.e. it is thinner than the
Sabine reverberation time of the room (≈1.8 s)).

place during two special events called “Couleurs Fran-
cophones”, each featuring a total of 11 performances of
french speaking artists both in March 2003 and March
2004. The data therefore concerns two audiences of ca.
1000 people, each reacting to 11 different performances of
various quality, leading to different degree and variability
of enthusiasm of the crowd. Each recording is stereo with
two channels; we were able to obtain the raw data, not
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Fig. 8. Height of the peak h, vs. width of the peak w, in a log-
log scale, for 17 applause endings. A best fit (in log scale) leads
to a slope of −0.64 ± 0.07, again very close to the mean-field
rfim prediction of −2/3. Note that the above value of the error
bar comes only from the regression. We have also shown, for
comparison, the slope corresponding to a ‘trivial’ behaviour,
h ∼ 1/w.

post-processed by sound engineering. Most of the available
data is actually post-processed, for example, the clapping
phase is artificially cut-off.

A typical recording of the clapping is shown in Fig-
ure 6. After an initial fast rise, one sees a relatively
constant level of clapping, followed in this case by a
rather smooth decay of the sound intensity. Note however
the presence of a few peaks, corresponding to occasional
shouts or other perturbations. At the qualitative level, we
indeed find two different categories of clappings, as illus-
trated in Figure 7, where we show a slow persistent clap-
ping, that takes over 10 s to smoothly die out, and two
fast ones. For the fastest case, the width of the stopping
period is in fact given by the width of the filter that we
used, which is comparable to the acoustic decay time of
the room (∼1 s). This shows that within the measure-
ment accuracy, the stopping period was instantaneous,
corresponding in our model to strong imitation effects,
J > Jc. The possibility of observing such discontinuous
events makes the clapping data extremely interesting: as
mentioned above, both birth rate data or cell phone data
seem to be in the continuous regime (J < Jc).

More quantitatively, we have again extracted from this
data set heights h and widths w of the peaks in the sound
intensity change, following exactly the same procedure as
above. In this case, we have removed a few recordings that
are extremely noisy (many spurious peaks, very different
left and right channels) or atypical (one recording shows
a two stage decay, which can happen in the case of a very
strongly heterogeneous audience: half of the audience may
have stopped clapping, while the other half carries on).
This leaves us with 17 different samples out of the 22 at
our disposal. The result is plotted in Figure 8, in a log-log
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scale, where we do not report the 2 points corresponding
to ‘abrupt’ endings (<1 s).

Rather remarkably, we find the very same quantita-
tive pattern as in Figure 4: the heights of the peaks are
related to their width as h ∼ w−0.64, again very close to
the mean-field prediction of the rfim, and quite different
from the trivial case where only the time scale of the phe-
nomenon changes, which would lead to h ∼ w−1. We find
this result quite striking, since this example is very close
to being a controlled experiment, that clearly gives some
credibility to the idea of social amplification trends, in a
way fully compatible with the rfim framework. We regard
the existence of abrupt endings in a crowd of 1000 people,
predicted by the model but unobserved in the previous two
examples, as a strong support of our contention, because it
means that our crowds are typically not far from the criti-
cal point, and the scaling assumption made in the analysis
of the data is plausible. However, our analysis should be
redone on a different, larger set of applause endings in well
controlled situations, to consolidate our findings.

6 Conclusion

In this work, we have tried to document quantitatively
collective effects induced by imitation and social pressure.
We have analyzed data from three different sources (birth
rates, sales of cell phones, decay of applause) within the
framework of the Random Field Ising Model, which is a
threshold model for collective decisions accounting both
for agent heterogeneity and social imitation. Changes of
opinion, demand or behaviour in this model can occur
either abruptly or continuously, depending on the impor-
tance of herding effects. The speed of change generically
peaks at a certain time; the main prediction of the model
is a scaling relation between the height h of the peak and
its width w of the form h ∼ w−κ, with κ = 2/3 for densely
connected populations (mean-field situation), quite differ-
ent from the trivial result κ = 1 which would follow from
– say – the Bass model, within which the shape of the
adoption curve is universal, only the time scale is affected
by imitation effects. Our three sets of data are compatible
with the rfim prediction, with κ ≈ 0.62 for birth rates,
κ ≈ 0.71 for cell phones and κ ≈ 0.64 for clapping. In the
last case, we in fact observe that some clapping samples
end discontinuously (w = 0), as predicted by the model
for strong enough imitation. Since the data is rather noisy,
the agreement of each individual example with the model
is perhaps not particularly impressive. However, we be-
lieve that the convergence of these three rather different
situations and the robustness of the theoretical picture
gives some credit to our conclusions.

Many other situations could be analyzed according to
similar lines: the invasion of other products and technolo-
gies (cars, television, Internet access, etc.), or other social
phenomena such as divorces, car accidents (for example,
the death toll on the French roads has sharply decreased
in the past few years after staying among Europe’s high-
est for decades), the evolution of opinion polls, social ri-
ots, strikes or upheavals [2], residential segregation [10],

discontinuities in History, etc., provided of course reliable
data is available. The case of crime statistics is interest-
ing and has been the subject of some studies (see [33]).
We have actually downloaded the statistics of crime in
different US states in the period 1960–2000. These show
a rather sharp rise during the sixties; unfortunately, all
states behave more or less identically, and the study per-
formed above could not be carried through. The conclu-
sion is, perhaps not unexpectedly, that the US population
tends to behave much more uniformly than in Europe,
where cultural differences are very perceptible (as our re-
sults on birth rates and cell phones confirm).

The present work could be extended in various di-
rections: getting better data, on a wider set of exam-
ples and samples, would confirm or disprove the valid-
ity of our analysis. For example, the direct observation of
avalanches of opinion changes, and the distribution of their
size, would be highly interesting. Also, situations where
the coupling is not global but more local, such as, e.g. large
open air concerts, would be worth investigating since the
value of κ is expected to change, and gets closer to 1 for
two-dimensional geometries [25]. From a theoretical point
of view, one could include in the rfim truly dynamical
effects, in the sense that crowds are not only sensitive to
the aggregate opinion, but also to the speed of change of
this opinion [20], which might lead to even stronger insta-
bilities. A way to include these in the rfim framework is
to rewrite equation (4) in a differential form, and to add
an extra ‘speed of change’ feedback, in the spirit of [34]:

[1 − 2Jp(−Φ)]
dO
dt

= 2R(−Φ)V

+
∫ t

−∞
dτK(t − τ)

dO
dτ

, Φ = F + JO, (9)

where V is the rate of change of F and K(.) is a certain
memory kernel.

An interesting outcome of a deeper understanding of
collective effects would be to be able to disentangle, in
the evolution of public opinion, a genuine opinion shift
from self-referential effects. If this separation could itself
become public information, the resulting ‘holoptical’ feed-
back loop (following the term proposed by Noubel [35])
could be stabilizing and prevent, or at least temper, opin-
ion swings, financial crashes or economic crises.

J.P.B. thanks M. Buchanan, A. Kirman, M. Marsili, M.A.
Miceli, J.P. Nadal, J.F. Noubel, A. Orléan, J. Sethna and R. da
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years. We also thank Edwige Roncière and Laurent Givernaud,
from Radio France, for providing the clapping recordings, and
M. Granovetter for pointing us to references [9,10].
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7. H. Föllmer, J. Math. Econ. 1, 51, (1974)
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